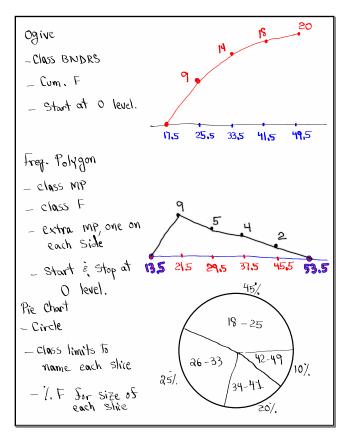
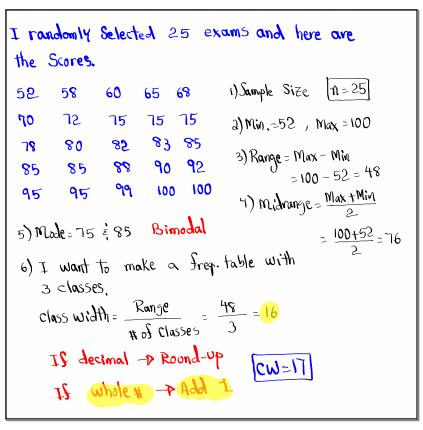
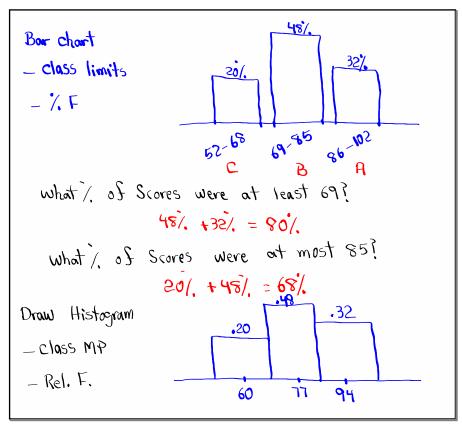

Feb 19-8:47 AM

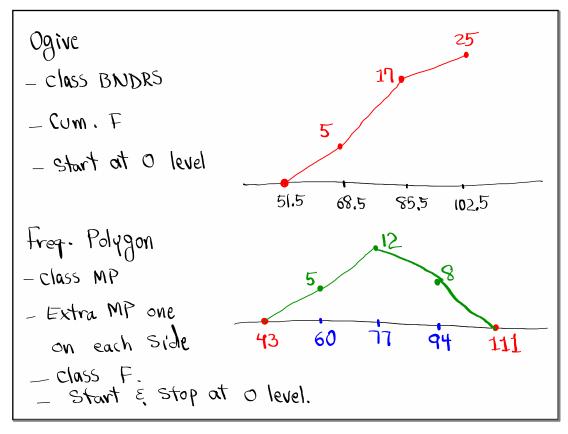

Jan 10-4:31 PM

Freq. table		
class limits class BNDRS class MP class 17.5 - 25.5 21.5		• .
$\frac{16}{36-33}$ $\frac{25.5-33.5}{39.5}$	1 1 1	5 \ 45%.
34 - 41 33.5 - 41.5 37.5		20 20%
42 - 49 41.5 - 49.5 45.5	2 20 .	10/10%
We need 4 Rows because we have	, clas	s MP
4 groups.	25 7 26 , clas 25,5 +cl	ass limits 2
Rel. $F = \frac{f}{n} = \frac{f}{20}$		
γι 20		

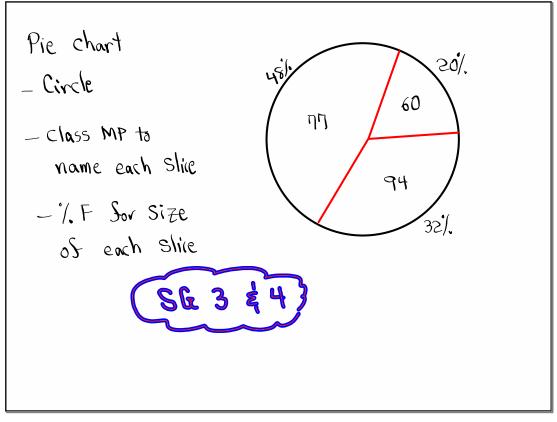

Jan 10-4:42 PM

Jan 10-4:57 PM


Jan 10-5:01 PM


Jan 10-5:11 PM

Class limits 52 - 68	class BNDRS1 (51.5 - 68.5	class mpi	_ \	2um.F1	Rel. F1	%.F. ao%.	
69 - 85	68.5 - 85.5	ባባ	12	[7]	.48	48/	
86 - 102	85.5 - 102.5	94	8	a5	•32	32/	
68 69 class MP Rel. $F = \frac{5}{\eta} = \frac{5}{25}$ $68.5 = \frac{4 \text{ class limits}}{2}$							
STEM	Plot	52	58	60	65 69	3	
528		70	72	75	75 7	.5	
6059		78	80	85	83	85	
8023	5558	85	85	88	90	9 2	
9025	7007	95	95	બુલ	100	100	


Jan 10-5:19 PM

Jan 10-5:32 PM

Jan 10-5:39 PM

Jan 10-5:44 PM

Consider the Sample below

2, 3, 4, 4, 8

1)
$$n=5$$

5) $\sum x = 2 + 3 + 4 + 4 + 8 = 21$

2) Mode = 4

3) Range = $8 - 2 = 6$

4) Midrange = $\frac{8+2}{2} = 5$
 $\overline{x} \rightarrow x - bar \rightarrow Sample Mean$
 $\overline{x} = \frac{\sum x}{n} = \frac{21}{5} = 4.2$

Average

 $S^2 \rightarrow Sample Variance$
 $S^2 = \frac{\sum (x - \overline{x})^2}{n-1}$ with Some algebra $S^2 = \frac{n \sum x^2 - (\sum x)^2}{n(n-1)}$
 $S^2 = \frac{5(109) - 21^2}{5(5-1)} = \frac{104}{20} = 5.2$
 $S \rightarrow Sample Standard deviation$
 $S = \sqrt{S^2}$
 $S = \sqrt{5.2} \approx 2.280 \approx 2.3$

Jan 10-6:06 PM

Consider the Sample below

1, 2, 4, 4, 4, 10

1)
$$R = 6$$

2) Range = $10 - 1 = 9$

3) Midwange = $\frac{10 + 1}{2} = 5.5$

4) Mode = 4

5) $\sum \chi = 1 + 2 + 4 + 4 + 4 + 10 = 25$

6) $\sum \chi^2 = 1^2 + 2^2 + 4^2 + 4^2 + 4^2 + 10^2 = 153$

7) $\overline{\chi} = \frac{\sum \chi}{n} = \frac{25}{6} \approx 4.161 \approx 4.2 \approx 4.17 \approx 4$

8) $S = \frac{Round-up}{n(n-1)} = \frac{6.153 - 25^2}{6(6-1)} = \frac{293}{30} \approx 9.767$

9) $S = \sqrt{S^2} = \sqrt{9.767} \approx 3.125$

How to estimate $S : S \approx \frac{Range}{4} = S \approx \frac{9}{4} = 2.25$

Range Rule - of - Thumb

Jan 10-6:16 PM

Jan 10-6:26 PM

What is Sample Standard Leviation?

It is a mon-negative value that
indicates how data elements are spread
out with respect to $\bar{\chi}$.

When S is Small -> Data elements are
close to $\bar{\chi}$.

When S is by -> Data elements are
more spread out
Srom $\bar{\chi}$.

When S is Zero -> All data elements
are Same as $\bar{\chi}$.

(No devication)

Jan 10-6:35 PM

Given:
$$n=10$$
, $\sum x=36$, $\sum x^2=166$, $\min=1$, $\max=8$

Range = $8-1=7$

Midrange = $\frac{8+1}{2}=4.5$
 $\overline{x} = \frac{\sum x}{n} = \frac{36}{10} = 3.6$
 $S^2 = \frac{n \sum x^2 - (\sum x)^2}{n(n-1)} = \frac{10.166 - 36^2}{10(10-1)} = \frac{364}{90} \approx 4.044$
 $S = \sqrt{S^2} = \sqrt{4.044} \approx 2.011 \approx 24$

Estimate $S = S \approx \frac{Range}{4} = \frac{7}{4} = 1.75 \approx 2$

Range rule of thumb

Jan 10-6:40 PM